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Abstract—This work presents the evolution of a solution for
predictive maintenance to a Big Data environment. The proposed
adaptation aims for predicting failures on wind turbines using a
data-driven solution deployed in the cloud and which is composed
by three main modules. (i) A predictive model generator which
generates predictive models for each monitored wind turbine
by means of Random Forest algorithm. (ii) A monitoring agent
that makes predictions every 10 minutes about failures in wind
turbines during the next hour. Finally, (iii) a dashboard where
given predictions can be visualized. To implement the solution
Apache Spark, Apache Kafka, Apache Mesos and HDFS have
been used. Therefore, we have improved the previous work
in terms of data process speed, scalability and automation. In
addition, we have provided fault-tolerant functionality with a
centralized access point from where the status of all the wind
turbines of a company localized all over the world can be
monitored, reducing O&M costs.

Index Terms—Big Data architectures, Machine learning, Cloud
computing, Wind power, Industry 4.0.

I. INTRODUCTION

The growth of renewable energy remains very fast, es-
pecially in the wind industry, where the increase has been
exponential in recent years. This aspect can be reflected on
and considered upon the wind energy power that was deployed
from 1997 to 2014. This trend is expected to continue in the
future [1].

In fact, global wind energy installations totalled 433 GW
as of the end of 2015, and the industry is set to grow by
another ∼60 GW in 2016 [2]. Moreover, the Energy Roadmap
2050 proclaims an aim that wind energy supplies of between
31.6% and 48.7% of Europe’s electricity will be achieved [3].
This increase has had a great impact on the operation and
maintenance (O&M) costs, where within the energy generation
costs, O&M costs can reach up to 32% [1].

In the current situation, it is very important that for both
medium and large-sized industrial companies, that there is
an implementation of predictive maintenance strategies for
increasing the lifecycle of their wind systems. This scenario
will increase the lifecycle of the company’s systems, improv-
ing their availability and reliability, which will then directly

affect the productivity [4]. In addition, such strategies will
reduce O&M costs. However, the growth of data that has
to be analyzed in order to do a predictive maintenance is
proportional to the growth of the wind industry. Currently, the
daily data volumes that are generated by the wind turbines
are too large to be processed with traditional technology
[5]. The management of these volumes of data requires a
system capable of incorporating the entire technology stack:
the extraction-transformation-load (ETL), the data filtering, the
data production, the statistical models and the data mining.
These all need to be embedded into a platform capable of
managing multiples tables of millions of rows, 10-100 times
faster than traditional technology. The key is to get the correct
information in the right format and at the right moment [6].
At this point, Big Data frameworks come in for analyzing
the data more efficiently so decision making processes can be
improved. Besides, it has already been shown that there is an
increment of 3% on a company’s productivity by using Big
Data frameworks [5].

This work presents a Big Data approach to adapt a predictive
maintenance method for wind turbines in order to be executed
in a scalable cloud computing environment. This way, it can
be deployed easily on a cloud such as Amazon EMR1 or
Microsoft HDInsight2 and scale horizontally as the data to
be processed increases its volume. The article shows how
the original solution was improved in almost all aspects.
Besides improving the method in terms of speed, scalability,
automation and reliability, we obtained better results as it has
higher overall accuracy and sensitivity rate [7].

This article is structured as follows: Section II presents the
State of the Art. Section III describes the usages of Big Data
architecture and followed methods. Section IV analyzes the
obtained results and the applied studies. Section V exposes
the conclusions and the future work.

II. STATE OF ART

Predictive maintenance, sometimes categorized as ”online
monitoring”, has a large history. Visual inspection, while being

1https://aws.amazon.com/emr/?nc1=h ls
2https://azure.microsoft.com/en-us/services/hdinsight/978-1-5090-0382-2/16$31.00 c©2017 European Union
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the oldest method, is still the most used one. These have
now evolved into automated methods by using processing
techniques that are based on advanced pattern recognition
signals [4].

Over recent years, about 30% [4] of the industrial equip-
ment does not benefit from predictive maintenance techniques.
Instead, periodic maintenance is used in order to detect any
anomalies or malfunctions in the components of their systems.
Such maintenance is usually done visually and physically
placed on the machine. In order to clearly discern between a
periodical and predictive maintenance, it has been shown that
no problems were found in 70% [8] of the periodic revisions,
while the percentages have reached up to 90% [9] when using
predictive maintenance techniques. This suggests that the latter
method can increase the maintenance efficiency, and therefore,
it can reduce the amount of failures in industrial systems.

Although the maintenance based on periodic revisions is the
most extended and used method, these techniques are being
increasingly classified as constituting defective and unreliable
methods [10]. After conducting a study with identical systems
that were tested under identical conditions [4], it has been
shown that the time until a failure occurs in the system is very
different from one system to another. The maintenance that is
based upon periodic revisions is thus ineffective, because it
is very difficult to know when a component of an industrial
process is going to fail based on a fixed period of time.

The evolution of technology has made predictive mainte-
nance techniques evolve too. The use of wireless sensors and
the posterior use of Supervisory Control and Data Acquisition
(SCADA) systems have provided companies with new ways
of collecting information about the performances of their
industrial machines. With these systems, more data can be
gathered in an easier manner. Therefore, the volumes of
available data are larger. One problem that arises is how to
know which data is relevant and which is not. As a result, the
challenge is to know how to obtain valuable information from
such data so as to support the decision making processes. For
that kind of a solution, data mining algorithms began to be
used in order to extract such information from historical data.
Data mining algorithms allow to see the behavior of industrial
equipment over time and to predict future failures, based on
the extracted information. Over the years, predictive models
have been generated by using different techniques, which have
been classified into three main areas: model based, data-driven
based, and case based models [11]. Nowadays, data-driven
based models are the most used ones [4].

In the field of wind energy, where wind turbines are
becoming larger and more powerful, having a good failure
detection system has become indispensable. In recent years,
there have been several studies in which new methods have
been proposed for performing a predictive maintenance on
wind turbines using data mining algorithms. Focusing on
previous classified techniques, within predictive models based
on models, several approaches have been identified like linear
models combined with artificial neural networks [12], the use
of Model Predictive Control (MPC) method [13] or Extreme

Learning Machine (ELM) algorithms [14]. Within data-driven
techniques, there are also some remarkable researches like an
anticipatory control based on MPC approach using time series
model [15], a novel predictive maintenance method based
on the Random Forest algorithm [16], a three phase based
method: offline training process, online monitoring phase and
online diagnosis phase [17], a new method using Artificial
Neural Networks (ANN) [18] or one that uses fuzzy models
[19]. Within case based techniques, there is a study that pro-
poses a novel method which combines an Adaptative Neuro-
Fuzzy Inference System (ANFIS) with a Big Data paradigm
[11].

In the last years, Big Data analytic approaches are becoming
more popular in a wide variety of industries and purposes such
for medicine [20][21], social networks recommendations [22],
logistic [23], structural health monitoring [24] [25], business
strategy development [26] or power consumption in manufac-
turing [27]. For the wind energy industry, some studies have
been also identified where a business intelligence approach is
presented for failure prognosis [28] or the requirements for a
Big Data approach are analyzed [29].

III. METHODOLOGY

This section presents the methodology that has been fol-
lowed within this development. Section III-A relates to the
motivation of this work. Section III-B describes the problems
that arise. Section III-C exposes the data that has been used.
Section III-D and Section III-E describe, respectively, the
architecture designed and the method followed to solve the
presented problem.

A. Motivation

As described in Section II, there are many approaches which
present novel methods to perform a predictive maintenance for
wind turbines. Although there are some researches using Big
Data approaches, we could not find nothing in the literature
using the latest technologies like the ones described in this
article, to apply a complete solution for the predictive mainte-
nance of wind turbines. Thus, our motivation is to contribute
with an adoption of an existing reliable predictive maintenance
method [16] to a Big Data environment. Therefore, the appli-
cation can be executed in the cloud and it can easily scale as
much as needed.

B. Problem

With the growth of the wind energy power, the compa-
nies of this industry have more and more wind turbines.
Moreover, wind turbines are bigger and more powerful. Thus,
the companies need to add more resources for maintenance
purposes, increasing O&M costs. A predictive maintenance
system based on traditional technologies requires having one
system in each wind farm since they do not use neither private
nor public cloud where centralize all the data, so that the
company can analyze them from a unique location. In addition,
the company needs to hire qualified people to manage each
predictive maintenance system.
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However, having all the data produced by the wind turbines
placed in a central system involves a huge computational
cost to being capable of processing all the information fast
enough to notify a future failure. Moreover, the notification
has to arrive with enough time allowed to repair it before the
component breaks down.

Other problem of traditional technologies is the scalability.
If the volume of data to be processed increases, it is very
hard to add more computational resources to handle it. In
this situation, the scalability is usually provided by buying
a more powerful hardware (vertical scalability), which is very
expensive and it has a limited scalability. This limit is set by
the current technology.

The work we have selected to adapt to a Big data environ-
ment, has these all problems because it was developed with
traditional technologies. To avoid them, we have developed an
application using cloud computing and Big Data frameworks
to provide the method with the ability to scale in an easier
and cheaper way (horizontal scalability) and to process the
data of hundreds of thousands of wind turbines in a scalable
way. Finally, these technologies let a company perform the
predictive maintenance of all its wind turbines located all
around the world from a central system in a fault-tolerant
manner. This will mean a considerable cost reduction in O&M
services.

C. Data

The data used in this work is composed by data gathered
from wind turbines during a period of two years. Data is
divided in two types: status data (alarms activations and deacti-
vations) and operational data, which represent the performance
of the wind turbines. There are 448 different alarm types and
104 parameters concerning the operational data.

New data is received every 10 minutes, so the values
of received data represent the mean values of such period.
Therefore, a wind turbine that works all the day will send
144 (6x24) rows of data per day. This work uses data from
a wind farm of 17 wind turbines, so 2.448 new rows of data
are obtained every day for a total of 1.787.040 in two years,
in the best case. The number of daily rows of data may not
seem very high, but this application is designed for scaling
to a hundreds or thousands of wind turbines, which means a
significant volume of data to be processed.

D. Architecture

To design the Big Data architecture for this application,
data acquisition, data persistence and data processing aspects
had to be taken into account. This was in order to make the
predictive maintenance to be remotely distributed, efficient,
scalable, and fault tolerant. Figure 1 shows the architecture of
the application and the used technologies.

For the data persistence, the Hadoop Data File System
(HDFS)3 is used. HDFS is a distributed file system that is
designed to run on commodity hardware. HDFS is fault-
tolerant and and can scale horizontally. Thus, HDFS is suitable

3http://hadoop.apache.org/docs/r1.2.1/hdfs design.html

for this application, because it has to persist and load large
volumes of data that are obtained from the wind turbines, in
a distributed manner, even if any errors occurs.

HDFS has master/slave architecture. It uses a single Na-
meNode which works as a master server and some DataNodes
which work as slaves. NameNode manages the file system
namespace and regulates access to the files by clients. DataN-
odes manage the storage that is attached to the nodes as
they run. The data is formulated into files that are split into
one or more blocks. These blocks are stored in one or more
DataNodes. In order to formulate the data that is gathered from
the wind turbines, each turbine has two files: one for the status
data and the other one for the operational data.

For the data acquisition, Apache Kafka4 is used. Apache
Kafka is a distributed streaming platform which works as
a messaging system. It uses a public/subscriber distributed
message system that classifies the messages into topics. A
topic is like a channel or a pipeline where messages are
published. The topics on Kafka are always multi-subscriber.
That is, a topic can have zero, one, or many consumers,
subscribed to the data written on it. However, this application
only uses one topic for each wind turbine, so there is only
one publisher and one consumer per topic. On the one hand,
the wind turbines publish data to the corresponding topics. On
the other hand, the monitoring agent has a consumer for each
wind turbine that it is monitoring. This way, the data for each
wind turbine is well organized.

Moreover, Kafka is a fault-tolerant system. If any error
occurs, published messages are still available—whether or not
they have been consumed—when the application or Kafka
is restarted. Thus, Kafka can be guaranteed not to miss any
message that is published from the wind turbines. Hence, the
consumers will consume the published messages at least once.
So the application can make a prediction for each published
operational data, even if an error has occurred.

For data processing purposes, Apache Spark5 is used. Spark
is an in memory fast and general engine for large-scale data
processing. It can process data 100 times faster than tradi-
tional technologies, according to the official documentation.
In addition, Spark is a scalable system that can scale to
hundreds or thousands of machines in a fault-tolerant manner.
These characteristics make Apache Spark very suitable to
process and analyze the large volumes of data that are gathered
from the wind turbines. The applications can be developed
in Scala, Java, Python and R, but Java is used for this
application. Spark is composed of five modules: Spark Core,
Spark Streaming, Spark SQL, MLlib and GraphX. So Spark
provides the requisites required for developing the proposed
approach that is embedded into one framework.

This application uses two data processing types: offline
processing in order to generate the predictive models and
online processing to make predictions in real time. Spark
Core is used for the offline mode, while Spark Streaming

4https://kafka.apache.org/
5http://spark.apache.org/
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is employed for the online mode. For querying the loaded
data from the HDFS, Spark SQL is used. In addition, Spark’s
machine learning library (MLlib) is used for data mining
purposes.

Fig. 1: Application architecture

For the cluster management purpose, Apache Mesos6 and
Apache Zookeeper7 are used. Apache Mesos abstracts CPU,
memory, storage, and other computational resources away
from the machines (physical or virtual), enabling fault-tolerant
and elastic distributed systems. Thus, it provides for a way to
unify all of the used frameworks as a single pool of resources.
Apache Mesos manages the resources of the clusters that
the frameworks could use. Apache Spark has two modes of
execution in Apache Mesos: a coarse-grained one and a fine-
grained one. The first mode allocates the fixed resources and
they are reserved only for it until the application finishes.
The second mode manages the resources dynamically, so that
when the application requires more resources, Mesos assigns
them to it until there is a specified maximum of resources.
Otherwise, if the application does not need so many resources,
it will leave them so that other applications can use them. For
this development, the fine-grained mode was selected, because
the application runs in a private cloud, the same as other
applications. Hence, all of the applications have to live with
each other, sharing the fixed resources.

Apache Zookeeper is a centralized service for maintaining
the configuration information and the naming for providing
distributed synchronization and group services. In this partic-
ular case, it is used for load balancing and for the Mesos
master node selection purpose. As is shown in Figure 2, there
are three Apache Mesos master nodes and two slave nodes.
Only one master node runs at a time, so the other two nodes
are in a standby mode waiting to start running if the principal
node fails. In that case, Zookeeper will select the new master
node. For that selection process, there are three Zookeeper
nodes to make the decision in a quorum. It could work with
only one node, but three nodes are the minimum number of
nodes for performing a quorum. Besides, having three nodes
provides for load balancing and for fault-tolerant features.

Referring to the execution of the application within the
cluster, the master node contains the main part of the appli-

6http://mesos.apache.org/
7https://zookeeper.apache.org/

cation and the slave nodes have executors, which execute the
required jobs or tasks. So, when a function is required to be
executed in the master node, it is divided into one or more
tasks. These tasks are sent to the slave nodes to be executed by
the executors and the result of them, converge to the principal
node when needed.

Fig. 2: Cluster architecture

This cluster is installed in a private cloud which has 32
cores and 128GB of RAM. Six of these cores are assigned to
Kafka and Zookeeper, three for each one. Mesos and HDFS
share 5 cores and the rest are reserved for the applications. The
proposed Spark application uses at most, 6 cores and 30GB of
RAM. Note that HDFS’s NameNode is installed in the same
node as the Mesos master nodes and that HDFS’s DataNodes
are installed in the same nodes as the Mesos Slaves. Hence,
the data that the application has to interact with is stored in the
slave nodes. As tasks are executed in the slave nodes, having
data already placed in those nodes improves the efficiency
of the application, because the data may have not to be sent
through the network.

E. Method

To better understand this section, the reader is urged to read
this article [7]. It describes the predictive maintenance method
we have adapted and modified to deploy it in a cloud by means
of Big Data frameworks.

Our method is divided into three parts: a predictive models
generator which generates the predictive models that are based
upon the historical data from the wind turbines; a monitoring
agent which makes the predictions when the data is received
from the wind turbines (every 10 minutes); and a front-end
where the wind turbines are able to be visualized geographi-
cally located in a map, as well as their notifications about the
predictions and the status information. While the first two parts
follow the original method, the last one is a new functionality
added to build a complete application.

As shown in Figure 3, the predictive model generator
obtains the historical alarms data of each wind turbine from
the HDFS and it performs some ETL processes in order to
remove useless data and to give them an adequate format.
An association rules algorithm is then applied to identify the
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critical status patterns that involve a fault on a wind turbine.
For this purpose, only status data is used.

Then, the base data training set is constructed combining
identified status patterns and operational data. Following the
original method, six data training sets are made and Random
Forest algorithm is applied to them to generate the required
six predictive models. An experimentation was done to identify
which were the best parameters to apply the algorithm to this
use case. Finally, each model is persisted in the HDFS. This
process was done in an automated, distributed and concurrent
way.

Fig. 3: Predictive Model Generator diagram

In the second part, the monitoring agent works 24*7*365.
As shown in Figure 4, at first, it loads all predictive models
in memory so that the agent can start to monitor the state of
the wind turbines. It means that the agent can then process the
data received from Apache Kafka’s topics. When new data is
received, a prediction is made by means of the corresponding
predictive models. Note that the wind turbines send operational
data every 10 minutes and that the prediction is always done
to forecast what is going to happen one hour later. Finally,
each prediction is sent via websockets to the front-end for its
visualization. As the agent has to keep working continuously,
it is designed to automatically recover its normal activity if
something wrong happens.

Fig. 4: Monitoring Agent diagram

In the third part, the front-end that was developed shows
user’s wind farms geographically located on a map. Each wind
farm has its own configuration and its own wind turbines.
So, the state of the wind farms and its wind turbines can be
visualized in real time, as well as the notifications about the
performed predictions. In Figure 5, a front-end’s screen-shot
is shown.

IV. EXPERIMENTATION

In this section, the results of the experimentation are
specifically described. Section IV-A describes the performed
analyzes for selecting the most relevant parameters. Section
IV-B exposes how the Random Forest’s parameter values were
selected. Section IV-C shows the accuracy of the predictive
models. Section IV-D discusses the obtained results.

A. Parameters Selection

As described in the previous sections, the operational data
has 104 parameters, but not all of them are relevant for the pre-

Fig. 5: Front-end

dictive models. Thus, a Principal Component Analysis (PCA)
was instigated in order to identify the most relevant ones. This
way, the list of parameters was reduced to 22, because these
variables represented the 99% of accumulated covariance. To
verify these results, Pearsons correlation coefficient analysis
was performed. The obtained results showed that there were
some groups with similar parameters, as is shown in Figure
6. So only one of each group was selected and the other ones
were discarded. In such a manner, the list was reduced to 14
parameters.

Fig. 6: Pearson’s coefficient correlation

With having to process fewer variables, the required time
to generate the predictive models decreased significantly. This
fact led us to improve the accuracy of the predictive models
because only the relevant parameters were used.

B. Selection of Random Forest parameters value

The Random Forest algorithm was used in order
to generate the predictive models. Ntrees = 40 and
Maxdepth = 25 were selected as the parameter val-
ues. These values were obtained from a performed analy-
sis where all of the predictive models were tested by us-
ing the following values: Ntrees ={5,10,15,20,...,100} and
Maxdepth ={5,10,15,...,30}. The obtained results showed that
the parameter which had the most impact on the model’s
precision was the depth of the trees. Figures 7, 8 and 9
graphically show the results that were obtained in terms of
accuracy, as the values of the previous variables increased. As
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is shown, the increment in the number of trees did not very
much affect the precision, while the increment in the depth
of the trees had a significant impact on the improvements
of the precision of the predictive models. Figure 10 shows
the behavior of the computational cost as the values of both
parameters were increased. As is shown, the computational
cost may reach up to 20 minutes per each predictive model.

Fig. 7: Accuracy of the normal output vs. numTrees and maxDepth

Fig. 8: Accuracy of the status pattern 1 vs. numTrees and maxDepth

Fig. 9: Accuracy of the status pattern 3 vs. numTrees and maxDepth

C. Obtained Results

The accuracy of the predictive models was measured by the
overall success, the success rates of errors (status pattern), no
errors (normal), and the success rates of individual classes. In

Fig. 10: Computational cost vs. numTrees and maxDepth

addition, the sensitivity and the specificity of each model is
measured. The sensitivity measures how good a model is at
detecting positives while the specificity measures how good
a model is at avoiding false alarms. In the following tables,
the results of three wind turbines are shown. Note that each
wind turbine had its own identified status patterns. Each status
pattern corresponded to a specific class. In Tables I, II and III,
the model’s number represents the time-stamp of the predictive
models that went from t+10 to t+60 (1-6). The percentages that
appear within the number of the classes are the percentages
of the instances for each class within the dataset.

• Number of classes: 5 (Table I)
• Classes:

– Class 1: InvCH0Loss, WLFRTActive
– Class 2: InvCH0Loss, WLFRTActive, GOverSpMax
– Class 3: GOverSpMax ,WLFRTActive
– Class 4: Normal
– Class 5: GOverSpMax, InvCH0Loss

• Number of classes: 2 (Table II)
• Classes:

– Class 1: Normal
– Class 2: YawTqAsym, WLFRTActive

• Number of classes: 3 (Table III)
• Classes:

– Class 1: WLFRTActive, YawTqAsym, YawBrBlock
– Class 2: Normal
– Class 3: YawBrBlock, WLFRTActive

D. Results Discussion

Referring to the overall success, the accuracy of most of
the predictive models obtained a success rate of 81%-85%,
which was higher than the adopted method, since it obtained
an overall accuracy of 76% [7]. This means a gain of 5%-9%.
However, the precision of the predictive models for 2 of the
17 wind turbines decreased to 70%-75%. When analyzing this
fact, we realized that the predictive models of both of these
two wind turbines had more of a number of classes than the
others, specifically five and six. Therefore, we have concluded
with a hypothesis that the more classes there are, the worse
the accuracy will be for the predictive models.
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TABLE I: Accuracy of predictive models of wind turbine 5

Accuracy
type

Accuracy individualized by class Accuracy error/no error Accuracy Sensitivity Specificity

Models \
Class

Class 1
(11.74%)

Class 2
(50.01%)

Class 3
(0.75%)

Class 4
(37.24%)

Class 5
(0.26%)

Error
(62.76%)

No error
(37.24%)

Global Global Global

Model 1 62.60% 92.56% 18.52% 82.35% 6.12% 85.52% 82.35% 84.34% 91.54% 74.11%
Model 2 64.50% 92.76% 9.96% 81.93% 9.09% 86.08% 81.93% 84.54% 92.10% 73.80%
Model 3 60.69% 92.59% 12.88% 82.13% 4.49% 85.63% 82.63% 84.32% 91.61% 74.04%
Model 4 65.85% 92.40% 15.87% 82.32% 5.95% 86.18% 82.32% 84.74% 92.15% 74.24%
Model 5 63.43% 92.51% 24.27% 82.01% 4.30% 85.91% 82.01% 84.45% 92.15% 73.69%
Model 6 64.95% 92.47% 16.12% 82.58% 8.82% 85.90% 82.58% 84.67% 91.98% 74.30%

TABLE II: Accuracy of predictive models of wind turbine 6

Accuracy type Accuracy individualized by class Accuracy error/no error Accuracy Sensitivity Specificity

Models \
Class

Class 1
(47.44%)

Class 2
(52.56%)

Error
(52.56%)

No error
(47.44%)

Global Global Global

Model 1 77.94% 89.04% 89.04% 77.94% 83.78% 89.04% 77.94%
Model 2 78.15% 89.44% 89.44% 78.15% 84.07% 89.44% 78.15%
Model 3 77.14% 89.58% 89.58% 77.14% 83.68% 89.58% 77.14%
Model 4 77.44% 89.18% 89.18% 77.44% 83.59% 89.18% 77.44%
Model 5 77.49% 89.43% 89.43% 77.49% 83.77% 89.43% 77.49%
Model 6 77.29% 89.20% 89.20% 77.29% 83.56% 89.20% 77.29%

TABLE III: Accuracy of predictive models of wind turbine 7

Accuracy
type

Accuracy individualized by class Accuracy error/no error Accuracy Sensitivity Specificity

Models \
Class

Class 1
(51.54%)

Class 2
(32.84%)

Class 3
(15.62%)

Error
(67.16%)

No error
(32.84%)

Global Global Global

Model 1 96.30% 80.17% 42.39% 83.38% 80.17% 82.62% 97.56% 69.59%
Model 2 96.30% 80.93% 41.59% 83.58% 80.93% 82.66% 97.68% 69.43%
Model 3 96.29% 80.32% 42.73% 83.81% 80.32% 81.96% 97.62% 70.25%
Model 4 96.26% 81.08% 41.85% 83.41% 81.08% 82.61% 97.79% 69.39%
Model 5 96.22% 80.85% 42.69% 83.46% 80.85% 81.87% 97.53% 70.00%
Model 6 96.47% 80.95% 42.00% 83.53% 80.95% 82.66% 97.70% 69.60%

Referring to the accuracy between the errors and no error,
the success rates of predicting a status pattern fluctuated
between 80%-90%, while the success rates of predicting
a normal state fluctuated between 75%-90%. The last per-
centages were usually lower than first ones when analyzing
the confusion matrices. It is shown that there were more
false positives than false negatives. That is, there were more
erroneous predictions in those cases where a status pattern
was predicted when in fact, the system was running well,
than in those cases where a normal state was predicted when
actually, there was a status pattern. In the particular context of
this application, the possible consequences of an undetected
fault are much greater than when detecting a fault erroneously.
Therefore, although the accuracy of no errors was low, it would
not have such a great consequence.

The accuracy of the predictive models that were individual-
ized by classes fluctuated too much from one class to another,
so it was difficult to group them. Nevertheless, it has been
shown that the higher the number of classes, the greater will
be the differences between each other. While for the majority
classes the success rate was 80%-96%, which is similar to
the adopted method’s accuracy, for the minority classes the

percentages may have decreased until 5%. This means that
although a status pattern could be satisfactorily predicted,
the type of such a status pattern could be badly predicted,
especially if it was of a minority class.

Placing the focus on the mean values in terms of global
accuracy, sensitivity and specificity of all the predictive mod-
els, the results between this approach and the one taken as
reference can be compared. As it can be appreciated in Table
IV, this approach has a better global accuracy by almost a 6%.
Moreover, it has a much higher sensitivity, concretely 15%,
and thus, it predicts with a major precision a real failure.
However, it has less specificity, around a 15%. It means it
has more false positives, according to what is mentioned
previously.

TABLE IV: Our proposal’s predictive models vs based work’s ones

Global
measure types

Accuracy Sensitivity Specificity

Base work [7] 76.50% 77.60% 75.70%
Our approach 82.04% 92.34% 60.58%

Although this approach was developed using a more suitable
technology for a faster and scalable data analysis than the
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adopted one, we could not compare this approach against it
in terms of scalability nor required execution time, since there
was not such data available.

V. CONCLUSIONS AND FUTURE WORK

This work has presented a Big Data analytics approach
for the renewable energy field. The proposed application has
adapted a predictive maintenance for wind turbines by using,
at first, a Big Data processing framework to generate data-
driven predictive models that are based upon historical data
previously stored in the cloud. Secondly, an online fault-
tolerant monitoring agent, developed by a Big Data stream
processing framework, predicts the state of the wind turbines
every 10 minutes. Lastly, a front-end where the status of
the wind turbines can be visualized in real-time has been
developed.

The experimentation has shown that the application has
obtained an optimal overall success. However, the accuracy of
the predictive models for predicting a concrete status pattern
has margins for improvement. This has been due in a grand
part to an unbalanced dataset for generating the predictive
models.

This application would be improved by balancing the dataset
before generating the predictive models. It would also be
prudent to do some scalability tests in the cloud to see how
much it could scale. Finally, an online learning could be
performed to maintain the predictive models always updated,
and thus, have the models adapted to the actual operating state
of the wind turbines.
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